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The long-time asymptotic properties of numerous dynamical lattice models are described by rich
phase diagrams. A suggestive pattern is observed about the universality class of second-order phase
transitions in such systems: if the transition occurs from (or into) a single absorbing state (where the or-
der parameter is then zero) then it belongs to the same universality class as directed percolation and
Reggeon field theory (RFT). This has been conjectured to be always true for one-component systems by
Grassberger and also by Janssen. Grinstein, Lai, and Browne have argued for a possible generalization
of this rule to multicomponent systems. I present an example of a one-component lattice model where
the second-order transition about a single absorbing state is not in the RFT universality class, thus
violating even the weaker conjecture of Grassberger and Janssen.
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Nonequilibrium phase transitions in dynamical lattice
models are the subject of growing interest [1,2]. In con-
trast to equilibrium phase transitions, nonequilibrium
(also known as ‘“dynamical”) phase transitions are less
well understood and even their classification into univer-
sality classes, or which of their properties place them into
different classes, is still a basic open question.

Schlogl’s [3] first model, X<>2X, X —0, is the proto-
type of one-component (X) systems undergoing a second-
order dynamical phase transition. Depending on the rel-
ative rates of the processes, the system may either evolve
to an empty state, where there are no X left, or to a reac-
tive steady state with a finite concentration of X (which
serves as an order parameter). By ‘‘second-order,” we
mean that the order parameter is continuous throughout
the transition. The empty phase is called an ‘““absorbing”
state, for once the system is in this state it cannot leave it.

Numerous lattice models and cellular automata are
closely related to Schlogl’s first model, including the con-
tact process [4], the 42 model [6], the cluster transition
model [7], and directed percolation (where the special di-
mension can be regarded as time), to mention just a few.
All of these systems exhibit a second-order dynamical
phase transition from a single absorbing state into a reac-
tive steady state. The transition can be characterized by
critical exponents, analogous to equilibrium phase transi-
tions. A remarkable similarity in the numerical value of
these exponents for all systems studied suggests that they
belong to the same universality class.

Cardy and Sugar [8] proved that the directed percola-
tion problem is in the same universality class as Reggeon
field theory [9] (RFT). Transitions in the RFT universali-
ty class are represented by the equation

—a%=DV2p(x,t)—rp(x,t)—-up(x,t)2+7](x,t) , (1)
where p(x,7) denotes the order-parameter field (which
can be usually understood as a concentration of the parti-
cles) as a function of space and time. The diffusion term
accounts for both intrinsic diffusion resulting from the re-
action rules and for explicit diffusion of the particles.
The last term 7 represents the noise in the system, which
vanishes as the absorbing state is approached. Since the
order parameter vanishes then too, the noise is commonly
assumed to have the property

(n(x,)n(x’,t")) =T ,(x,1)8(x—x")8(¢ —1') . )

The remaining terms on the right-hand side of Eq. (1),
—rp—up?, are the only ones that survive in the mean-
field approximation. They represent the birth and death
of particles. As long as r >0 the system flows into the ab-
sorbing state p=0. The transition into the stationary,
reactive phase takes place as r becomes negative.

The RFT universality class is extremely robust. In ad-
dition to models with two-particle interactions it seems to
include systems with three-particle interactions, such as
the N3 and the D3 models [6]. Numerical simulations of
one-dimensional lattice models and cellular automata
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based on Schlogl’s second model 2X<«+3X and X —0, for
which mean-field analysis predicts a first-order phase
transition, show a continuous transition with RFT criti-
cal exponents. This has led Grassberger [10] to conjec-
ture that all one-component nonequilibrium models with
a transition about a single absorbing state belong to the
RFT universality class. A similar conjecture was formu-
lated by Janssen [11].

It would be interesting to find a counterexample to the
Grassberger-Janssen conjecture. Unfortunately, the criti-
cal exponents of nonequilibrium systems are usually
determined numerically. The measuring of these ex-
ponents is a difficult task, often yielding inaccurate re-
sults. Indeed, the cellular automaton of Bidaux, Boccara,
and Chaté [2] (BBC) was initially believed to violate the
conjecture but was later found to be in the RFT class
[13]. Takayasu and Tretyakov [14] have studied models
of branching annihilating random walks [15] (BAW’s).
Their results suggest that BAW’s may violate the conjec-
ture. However, recent studies point to the contrary [16].

Consider now the following one-component process in
one dimension. Each lattice site may be either empty or
occupied by a particle A. The A particles can randomly
hop to the nearest-neighbor site to their right or left. If
the target site is already occupied, then the two particles
annihilate (the original site and the target site are then
empty). In addition to these diffusion and annihilation
processes there is also input of A4 particles at a rate pro-
portional to their global concentration on the line, p 4.
The input is performed onto random lattice sites, Again,
if the target site happens to be occupied, instantaneous
annihilation takes place. Thus the system consists of
diffusing A4 particles with a characteristic diffusion con-
stant D, which annihilate immediately upon encounter,
A+ A—0. The input of particles occurs at a rate kp 4,
where k is a constant.

The above system has a single absorbing state when the
line is completely empty, p ,=0. If there is no input
(k=0), the system will always evolve to the absorbing
empty state. For any finite k, it will arrive at a steady-
state behavior characterized by a finite stationary concen-
tration p%. I use dimensional analysis to estimate p*;.
The only two physical parameters determining the long-
time asymptotic behavior are the diffusion coefficient D
and the input rate constant k (note that annihilation is
immediate and therefore involves no characteristic time
scale). Since D ~ (length)z/(time) and k ~1/(time), we
have p; ~1/(length)~(k /D)'/2. Interpreting p%, as an
order parameter and k as its critical field, the system is

seen to violate the Grassberger-Janssen conjecture, since
for it the order-parameter critical exponent is =1, un-
like the RFT value of 8~0.277 (in one dimension). A
similar argument has been applied to diffusion-limited
coagulation (A4 + A — A) in one dimension with random
particle input at constant rate R [17]. There
R ~1/(length)(time) and dimensional analysis yields
P’y ~(R /D)3, in complete agreement with the exactly
known result [17].

In summary, I have presented a one-component
dynamical model in one dimension which violates the
conjecture of Grassberger and Janssen. Recently, Grin-
stein, Lai, and Browne [18] have argued for a possible ex-
tension of the conjecture to multicomponent systems.
Studies of the two-component Ziff-Gulari-Barshad [19]
(ZGB) model show that its second-order phase transition
is indeed in the RFT universality class [18,20]. The argu-
ment of Grinstein, Lai, and Browne is that all but one
field can be ‘“renormalized away” and are therefore ir-
relevant. The remaining relevant field satisfies equations
similar to (1) and (2), placing the system in the RFT
universality class. That is, Grinstein, Lai, and Browne
effectively collapse multicomponent systems into a
one-component system and thereafter rely on the
Grassberger-Janssen conjecture. Thus the counterexam-
ple presented here also casts doubts on the stronger con-
jecture of Grinstein, Lai, and Browne.

In closing, I would like to draw attention to the fact
that even in the cases where we seem to explain second-
order transitions as RFT our understanding is far from
complete. The casting of the ZGB model into a RFT
equation does not fully account for the lattice’s dimen-
sion. Thus, while it explains the observed RFT ex-
ponents in dimensions d =2, the strikingly different be-
havior in one dimension, where the second-order phase
transition does not even take place, remains a puzzle.
Likewise, the BBC automaton is in the RFT class in
d =1, but its phase transition is discontinuous for d > 1.
There is no way to predict this behavior from its field-
theoretical representation. We must continue in our
effort to find simple rules for the classification of none-
quilibrium phase transitions.

I thank Ron Dickman and Joachim Kohler for in-
teresting and useful discussions, and Iwan Jensen for
communicating his results on BAW’s prior to publica-
tion. I also thank PRF (Grant No. 23115-ACS5) and NSF
(Grant No. CHE-9008033) for funding this project.

*Electronic address: qd00@ craft.camp.clarkson.edu
[1] G. Nicolis and 1. Prigogine, Self-Organization in None-
quilibrium Systems (Wiley-Interscience, New York, 1977).
[2] H. Haken, Synergetics (Springer-Verlag, New York, 1983).
[3] F. Schlogl, Z. Phys. 253, 147 (1972).
[4] T. E. Harris, Ann. Prob. 2, 969 (1974).
[5] R. Dickman and M. A. Burschka, Phys. Lett. A 127, 132
(1988).
[6] R. Dickman, Phys. Rev. B 40, 7005 (1989).

[71D. A. Browne and P. Kleban, Phys. Rev. A 40, 1615
(1989); T. Aukrust, D. A. Browne, and 1. Webman, Euro-
phys. Lett. 10, 249 (1989); Phys. Rev. A 41, 5294 (1990).

[8] J. L. Cardy and R. L. Sugar, J. Phys. A 13, 1423 (1980).

[9] V. N. Gribov, Zh. Eksp. Teor. Fiz. 53, 654 (1967) [Sov.
Phys. JETP 26, 414 (1968)]; H. D. 1. Abarbanel, J. B.
Bronzan, R. L. Sugar, and A. R. White, Phys. Rep. 21C,
120 (1975); R. C. Brower, M. A. Furman, and M. Moshe,
Phys. Lett. 76B, 213 (1978).



47 BRIEF REPORTS 713

[10] P. Grassberger, Z. Phys. B 47, 365 (1982).

[11] H. K. Janssen, Z. Phys. B 42, 151 (1981).

[12] R. Bidaux, N. Boccara, and H. Chaté, Phys. Rev. A 39,
3094 (1989).

[13] . Jensen, Phys. Rev. A 43, 3187 (1991).

[14] H. Takayasu and A. Y. Tretyakov, Phys. Rev. Lett. 68,
3060 (1992).

[15] M. Bramson and L. Gray, Z. Warsch. Verw. Gebiete 68,
447 (1985).

[16] I. Jensen (unpublished).

[17] C. R. Doering and D. ben-Avraham, Phys. Rev. Lett. 62,

2563 (1989); D. ben-Avraham, M. A. Burschka, and C. R.
Doering, J. Stat. Phys. 60, 695 (1990). This model is not a
counterexample to the conjecture, because it has no ab-
sorbing state.

[18] G. Grinstein, Z.-W. Lai, and D. A. Browne, Phys. Rev. A
40, 4820 (1989).

[19] R. M. Ziff, E. Gulari, and Y. Barshad, Phys. Rev. Lett. 56,
2553 (1986).

[20] I. Jensen, H. C. Fogedby, and R. Dickman, Phys. Rev. A
41, 3411 (1990).



